
ODK Tables: Case Studies in Deployment
Samuel Sudar, Saloni Parikh, Mitchell Sundt, Gaetano Borriello

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195

{sudars, ssparikh, msundt, gaetano}@cs.washington.edu
ABSTRACT
Open Data Kit (ODK) Tables is an Android application that
allows users to enter and curate tabular data. Users can view the
data through built-in or custom views using HTML/JavaScript. In
this paper we discuss our lessons learned from real-world
deployments of Tables. Specifically, our initial aim of providing a
customized view of a table did not have a sufficient level of
customizability. Rather than simply the views of the data tables,
the entire application needed to be navigable using web-based
tools that do not require recompilation to make presentation
changes. We also discuss issues encountered with making the
application scalable when faced with real-world datasets.

Keywords
Open Data Kit, ODK Tables, mobile phones, mobile database,
data tables.

1. INTRODUCTION
Data collection on smartphones has become an important
component of many ICTD applications. Tools like Open Data Kit
(ODK) [1, 2] simplify the act of data collection through the use of
forms and increase the quality of collected data. With increasingly
powerful mobile tools available, organizations desire more
sophisticated data collection capabilities that go beyond simply
replacing paper forms with a convenient user interface on a
smartphone. ODK Tables [3] is a tool designed to fill this role.

ODK Tables acts as a data manager and viewer. It occupies a
middle ground between two common models of storing data in the
developing world—spreadsheets (e.g. Excel) and relational
databases (e.g. Access). These tools are popular because of their
relative ease of use compared to fully-featured database
management systems, and both provide valuable functionality:
Excel serves to quickly visualize and edit data, while Access
supports sophisticated queries and linking data between tables.
ODK Tables supports a set of features from both of these
applications, including visualizing, querying, and linking data
tables. It excludes certain features that are highly specialized,
error prone, or too cumbersome for use on a mobile device. Data
tables can be viewed using a set of built-in views as well as a
number of customizable views, including List, Detail, Map, and
Graph views. These views are implemented in HTML/JavaScript
and do not require recompilation to accommodate changes in
configuration.

For example, an application may consist of a table of vaccine
storage facilities. Another table stores a list of refrigerators, each
associated with a facility by means of the facility key as in a
relational database. In ODK Tables, this data can be viewed with
a built-in spreadsheet view, as if viewed in Excel. Additional
custom views can also be included, so that a List view written in
HTML displays an element for each row. Clicking on an element
opens a Detail view, where all the information in the row is
presented in a customized fashion. For instance, the types of
power supply at this facility can be indicated with checkboxes,
and a link can be presented in the view that opens another List
view displaying all the refrigerators at the facility.
Over the past year, ODK Tables has been used to build several
real-world applications, including an actual deployment. The first
was a country-level vaccine cold-chain database. This includes all
the vaccine storage facilities in the country, as well as all the
refrigerators in the cold chain. It applies many features originally
presented as part of ODK Tables, including Map views and
conditional color rules. With these features an administrator is
able to look at a map and easily visualize the state of the cold-
chain within a country.

The second application involved setting up Tables to serve as the
main data collection interface for a longitudinal HIV study.
Subjects are tracked over a period of two years, with regular
follow-up visits. Each follow-up corresponds to a distinct time
point in the study and requires a specific form. Further, males and
females require different forms, as do subjects in different age
ranges.

In the course of preparing these applications it became apparent
that several elements of the original Tables design were
preventing the application from reaching its goal of being highly
useful to a range of applications. Specifically:

1. Disconnected configurability. A complete ODK Tables
application, including data and custom views, can be
downloaded from a server. However, in many cases
configuration of a device is expected to occur in an offline
setting with a minimal amount of effort, often by non-
technical users.

2. Users require app-level customization. While table-level
customization in the form of a variety of views was useful,
users also desired a customizable way to navigate through
the application.

3. Scalability. Many applications involve thousands of rows
and dozens of columns. To avoid memory constraints, we
were forced to alter the way the data objects are passed to
Android WebViews and the way complex objects are
serialized to the database.

We present an overview of how we addressed the above issues,
and provide examples of how the use cases motivated their
resolution.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
ACM DEV-4, Dec 06—7 2013, Cape Town, South Africa
ACM 978-1-4503-2558-5/13/12.
http://dx.doi.org/10.1145/2537052.2537077

2. DISCONNECTED CONFIGURATION
Configuration of an application must be possible in the absence of
a reliable data connection. Further, it must be simple and
straightforward so that it can be accomplished by non-technical
users. This allows the addition of devices to a deployment without
requiring the presence of a study technician. This was of
particular importance to the HIV study, which is taking place over
a period of two years at a number of sites. Disconnected
configuration allows the addition of a device to the study to be a
simple process and decouples the administration of the study from
the specific devices that are deployed.
Addressing this problem consisted first of allowing a complete
export of data, including all metadata in a data table. An exported
table will thus include all the ODK Tables-specific metadata
relevant for the synchronization of each row, as well as the user-
defined data. This ensures that a complete set of information,
including the state of the data within the application, can be
moved between phones.

Second, the application must be able to reference and import this
data with minimal user involvement. This was accomplished by
supporting a configuration file. At startup, it scans the base
directory for a file named “config.properties”, which is formatted
as a conventional Java properties file. This includes information
about the files to import. Thus to configure the application, a user
must copy a directory containing a configuration file onto the
device. When the application is opened, if the properties file has
been modified, configuration occurs and the application is
initialized without requiring any additional user interaction.

3. APPLICATION CUSTOMIZATION
The burden on the interviewer to select the right form can be
minimized if the study designer is able to customize the entire
experience with the application. While navigating a data table via
a series of customized HTML skins makes the data more
manageable and adds valuable functionality for our users, it is
does not go far enough in providing an overall customized
experience at the application level. Originally, when the ODK
Tables application was opened, the user was first presented with a
list of all the data tables in the database. The customized
interaction with the data began after a table was selected from this
list. However, some users also require context to help them
choose the correct table by which to enter into the data set. This
reduces the amount of training required and increases the
likelihood of strict adherence to the study protocol.

The HIV study follows this model, and selection of the correct
form is facilitated by application-level customization. ODK
Tables now opens with a screen defined in HTML that presents
options to follow up with an existing patient or enroll a new
patient. At that point it begins to restrict the number of forms
presented as options to the interviewer based on the study
protocol, which has been encoded into the HTML skins by the
study designer. Rather than expecting the interviewer to select the
correct form from the entire list, they are shown only the
applicable options. It is then possible to query the local database
to see which visits have already been entered and thus present
only the applicable forms, rather than the entire list of forms
available to the application.

ODK Tables can still operate in the conventional mode described
in [3], where a customized navigational experience occurs only
when viewing a data table. However, at startup it now first checks
to see if a custom home screen file, written in HTML/JavaScript,
has been specified. If it has been, the application presents this

customized page rather than the default list of data tables. As with
the other custom views in ODK Tables, this home screen can take
complete advantage of all the tools available in HTML and
JavaScript.

4. SCALABILITY
Both the cold-chain and HIV study applications described above
included larger datasets than were used in the original studies.
These include tables with thousands of rows and with hundreds of
columns. This produced two issues with scalability we were
forced to address.

The first was the way that Java objects were passed to the Android
WebView that is responsible for rendering the customized
HTML/JavaScript files. An object representing a data table is
given to the WebView as a JavaScript interface with the handle
“data”. An object is added each time a table is viewed, so that 10
data objects are added to the WebView over the course of viewing
10 tables. It was discovered that the despite the old objects
ostensibly being unreachable, as “data” in the JavaScript refers
only to the latest table, the objects were not being garbage
collected. If a number of large tables were viewed, this resulted in
an eventual crash as the JVM memory limit was exceeded. This
was of particular concern in the cold-chain application, where a
user might browse a list of all the refrigerators in a country
inventory numerous times in a single ODK Tables session. We
now instead pass a wrapper containing a WeakReference to the
object and keep the strong reference in the Android code, thus
allowing appropriate garbage collection.

Second, we persist many of the more complex objects in our data
model to the database as JSON serializations. Dealing with a
number of tables, many with hundreds of columns, resulted in a
decrease in performance as the objects were de- and re- serialized.
This was completely mitigated by implementing a more
aggressive caching system for our own abstraction objects.

5. CONCLUSION
These applications demonstrate the capabilities of ODK Tables as
a data browser and manager. They have also highlighted the
importance of functioning in disconnected environments as well
as providing a means to completely customize interactions with
data. Real-world evaluations of the tool have motivated the
evolution of Tables away from being simply a data manager. With
the advent of complete application-level customization, it has
become a framework for designing mobile applications with web-
based tools that do not require recompilation. A single installation
of ODK Tables can thus be used with a variety of HTML skins in
order to produce a number of distinct data-driven applications for
disconnected environments.

6. REFERENCES
[1] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng, G.

Borriello. “Open Data Kit: Building Information Services for
Developing Regions.” In Proc. of 4th IEEE/ACM
Information & Communication Technologies for
Development (ICTD 10), Dec 2010.

[2] Open Data Kit. http://opendatakit.org/

[3] Waylon Brunette, Samuel Sudar, Nicholas Worden, Dylan
Price, Richard Anderson, and Gaetano Borriello. 2013.
“ODK tables: building easily customizable information
applications on Android devices.” In Proc. of the 3rd ACM
Symposium on Computing for Development (ACM DEV
13), Jan 2013.

