
Demo: Siskin: Leveraging the Browser to Share Web Content in
Disconnected Environments

Samuel Sudar
University of Washington

Sea�le, WA
sudars@cs.uw.edu

Ma� Welsh
Google, Inc.
Sea�le, WA

mdw@mdw.la

Richard Anderson
University of Washington

Sea�le, WA
anderson@cs.uw.edu

ABSTRACT
Schools in the developing world frequently do not have high band-
width or reliable connections, limiting their access to web content.
As a result, schools are increasingly turning to O�ine Educational
Resources (OERs), employing purpose-built local hardware to serve
content. �ese approaches can be expensive and di�cult to main-
tain in resource-constrained se�ings. We present Siskin, an alter-
native approach that leverages the ubiquity of the web browser to
provide a distributed content access cache between user devices on
the local network. We demonstrate that this system allows access
to web pages o�ine by identifying the browser as a ubiquitous
platform.

1 INTRODUCTION
�e web has tremendous potential to enable education for users
in emerging markets. With an increasing amount of free or open-
use educational content becoming available online (Khan Academy,
Wikipedia for Schools, etc.), schools in developing regions can bring
vast quantities of human knowledge directly into the classroom.
However, the web is built with the assumption of fast, free, and
always-on connectivity. �is presents a substantial challenge to
schools in developing regions, which o�en have slow or intermit-
tent Internet connectivity, such as a �aky dialup connection [4].
While modern web standards make it possible to develop sites that
can be used o�ine (e.g., using ServiceWorkers to persist content in
the browser), this approach does not scale to the vast quantity of
legacy web content. �e conventional approach to working around
this problem involves caching static snapshots of web content, typ-
ically on dedicated hardware [1, 3]. However, this approach poses
substantial logistical and cost challenges for schools in emerging
markets. A typical edge cache box costs upwards of several hundred
dollars, which can be prohibitive, and still requires manual main-
tenance and updates to so�ware and content [9]. Schoolteachers,
especially in developing countries, are not system administrators
and cannot be expected to maintain esoteric hardware and so�ware
to support classroom web use.

Our key observation is that modern web browsers have the capa-
bility to support everything needed to enable automatic, distributed
caching of web content that can be shared across multiple users on
a LAN. While the basic idea is not new—distributed caches have

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHANTS’17, October 20, 2017, Snowbird, UT, USA.
© 2017 Copyright held by the owner/author(s). ISBN 978-1-4503-5144-7/17/10.
DOI: h�p://dx.doi.org/10.1145/3124087.3124088

been explored since the foundations of the web [8, 11, 12]—our
work leverages three key insights that represent a practical, de-
ployable solution for real-world users today. First, conventional
HTTP caching is inadequate for supporting true o�ine access to
Web content. Given that most web pages (and many resources
that they depend on) are uncacheable [2], and the degree to which
websites use dynamic content fetched, e.g., using AJAX, standard
HTTP caches cannot guarantee that a given page will be fully cache-
resident and hence usable by a user without an Internet connection.
Second, separating the functionality and maintenance of the cache
from the device and so�ware used day-to-day implies that function-
ality will erode quickly. �e caching solution should be integrated
directly into the device and so�ware (e.g., the browser) that the
user interacts with, to ensure it does not introduce a single point
of failure and does not su�er from neglect. And third, modern
protocols (such as Multicast DNS (mDNS) and DNS Service Discov-
ery (DNS-SD)) enable automatic discovery and sharing of resources
across a LAN segment, leveraged in products such as the Chrome-
cast media-streaming device and others. �is can enable seamless
sharing across multiple users without overhead for con�guration
and management.

In this paper we describe Siskin, an approach to distributed
snapshot caching of web content fully integrated into the Chrome
browser. To use Siskin, the user simply needs to install a Chrome
App and Extension. Siskin allows users to locally save snapshots
of web content that they browse, and it automatically shares those
snapshots with other users on the LAN. While browsing, Siskin
automatically discovers snapshots of pages hosted by other users on
the network, and it retrieves those snapshots over the local network.
Siskin is built using existing Chrome App and Extension APIs to
perform web content snapsho�ing, storage, network discovery, and
peer-to-peer content transfer.

2 SYSTEM DESIGN
Siskin provides a seamless distributed cache of web page snapshots
available to any device on the same LAN segment; this will typically
be a single classroom or a goup of classrooms. Every peer in the
Siskin network hosts web page snapshots, which can be discovered
and fetched by other peers on the network, avoiding the need for
fetching content from a slow or intermi�ent Internet connection.
Siskin achieves this using a combination of local page snapsho�ing
and caching; peer discovery using mDNS; peer-to-peer snapshot
fetching using Web Real-Time Communication (WebRTC); and a
Chrome App to provide the UI.



2.1 Snapshotting Content
�e fundamental unit in Siskin is the rendered page. �is creates a
one to one mapping between a top-level URL and a resource resident
in the cache. �is approach e�ectively snapshots the rendered web
page that results from a visit to a URL. Unfortunately there is not
yet a standard for distributing web pages that perfectly recreates a
connected experience. �e most widespread support is for MHTML,
which takes a snapshot of the DOM, inlining external resources like
images. �is has the bene�t of being a single hermetic �le, making
distribution simple, and of being well-supported by browsers. When
a saved page is viewed, it is fetched from the peer, saved to disk, and
displayed in a browser tab. MHTML snapshots are saved manually
by users. When visiting a page, clicking the Siskin Extension icon
in the Chrome toolbar saves the page as MHTML and adds it to
the cache using the Chrome App and Extension APIs. For security
reasons, we elected to keep snapsho�ing a manual process.

Although widely supported, a notable shortcoming of MHTML
is the fact that it does not support JavaScript execution. For this rea-
son responsive sites and web apps are not well-suited to MHTML.
An alternative approach might be to ignore cache-control headers
and simply cache all resources, as in [5] and [10]. We �nd the single
�le, hermetic nature of MHTML to be a preferable distribution
mechanism. Resource-level caches are best suited to con�gurations
where a cache sits between a machine and the origin server, allow-
ing individual requests to be handled in �ight. Saving pages as an
MHTML resource simpli�es distribution by allowing alternative
con�gurations, including look-aside caching behavior where a user
is informed before navigation that a local load will succeed. Em-
ploying MHTML allows content to be added to the cache as logical
units and distributed with associated provenance. It is explicit that
MHTML is only a snapshot, not a stale page served from a cache.

Siskin does not try to support web app behavior that requires
complex interactions with a server. Email applications, for example,
are not handled. Siskin aims only at operations where a page can
be displayed without needing to interact with a server a�er the
time the page is saved.

2.2 Peer Discovery
A discovery component is necessary to �nd peers running Siskin
on the local network. We accomplish this by employing mDNS
and DNS-SD. �ese zero-con�guration protocols are a standard
solution to the problem of network service discovery; they are
employed by many services, including Chromecast media streaming
devices [6, 7]. mDNS uses multicast UDP to issue DNS queries
to the local network, while DNS-SD speci�es how to use DNS
records as a hierarchical database for service discovery. Using both
together, clients can discover peers running a service and resolve an
IP address and port combination to connect to the service. Chrome
Apps provide an API to issue and respond to UDP requests, making
an implementation of mDNS and DNS-SD straight forward.

2.3 Content Discovery
Local content discovery takes one of two forms. In the �rst, a
list of peers on the network is presented via the App UI. Upon
selecting a peer, the list of pages saved by that peer is presented
to the user much like listing the contents of a directory. In the

second, regular browsing behavior is augmented to inform users
of locally available content. Locally available URLs are styled with
icons to indicate their availability. �is process is referred to as
“cache coalescence”. To accomplish this, peers disseminate Bloom
�lters, as in [8], representing the URLs they have cached locally.
�e App component of Siskin maintains this information, allowing
instances to locally determine if a given link is available from a
peer. Links on a page are annotated to show that they are available.

�erying the App component for coalescence information does
not inhibit browsing. To measure query latency, we constructed
four HTML pages with 1, 10, 100, and 1,000 outbound links. We also
generated a synthetic cache directory containing 10 peers, each
of which contained 1,000 pages. �e cache directory was already
present in memory, as if peer state had already been communicated.
�e query latency is the time to look up all of the outbound links
on the page in the cache directory. �e mean results over 100 runs
are shown in Figure 1.

Figure 1: Mean times to query for URLs available on the net-
work of 30 peers, each with 1,000 pages.

Our prototype of Siskin uses a fairly simplistic cache coalescence
strategy—each peer exchanges a Bloom �lter of locally-cached URLs
with every other peer on a periodic basis (every 60 seconds). We
perform this via unicast, where each peer sends a Bloom �lter to
every other peer. More e�cient schemes, for example, leveraging
multicast, are also possible.

We analyze a theoretical network of between 2 and 50 peers,
each of which is caching 1,000 pages locally. Each peer encodes the
list of cached URLs into a Bloom �lter with a target false positive
rate of 0.001, which requires 1,798 bytes. We consider an 802.11b
network, as might be expected at a rural school, with an aggregate
TCP throughput of 5.9 mbps. Fully distributing cache state requires
each peer to communicate their state to every other peer, resulting
in 4.4 MB that must move across the network. �is would require
6.0 seconds if all 50 peers joined the network at the same time.
Figure 2 shows the bandwidth requirements of our unicast strategy
for di�erent refresh rates. �is assumes that an initial distribution
has been completed and the Siskin peers are periodically informing
peers of their content by completely redistributing their Bloom
�lters.



Figure 2: Bandwidth consumed by fully redistributing cache
directory information via a unicast mechanism. Bandwidth
is estimated at di�erent refresh rates as additional peers
join the network, each hosting 1,000 pages. �e dashed line
shows a theoretical maximum throughput of 5.9 mbps.

2.4 Security and Privacy
We identify three main areas relevant to security and privacy in
Siskin: 1) con�dentiality of shared content; 2) secure communica-
tion between peers; and 3) integrity of cached content.

�e �rst area relates to the con�dentiality of content. Our ap-
proach of snapsho�ing pages makes this problem non-trivial. If a
user elects to snapshot their email client or social media wall, for
instance, they run the risk of leaking potentially private informa-
tion to others on the network. We elected to make snapsho�ing
pages require a manual action from the user. In our prototype,
content is guaranteed not to be shared until hi�ing the extension
icon and electing to save content, allowing users explicit control
over what content is available. Additional defenses could include
blacklisting social media sites and implementing access control,
allowing snapshots to be private or restricted to speci�c users.

�e second area relates to secure communication. Siskin should
support both encrypted and authenticated communication. �e
WebRTC transport mechanism ensures that communication is en-
crypted, but in our prototype we do not authenticate this connec-
tion. However, it is possible to perform authentication via a protocol
akin to Secure Simple Pairing (SSP), which is used to pair Bluetooth
devices. It provides a way to both exchange an encryption key and
authenticate that the exchange was not subject to a man in the
middle a�ack. SSP includes a numeric comparison mode by which
two users compare several numeric digits, checking for equality.
�is exploits physical proximity of two devices and is appropriate
for Siskin, where users are expected to be on the same LAN.

�e �nal area, integrity of content, is not provided by our proto-
type. Snapsho�ing and sharing are performed by untrusted peers,
meaning that integrity guarantees stemming from the use of HTTPS
are lost. Snapshots could be tampered with, or sophisticated peers
could falsely claim that a fabricated snapshot originated from a spe-
ci�c domain. Integrity guarantees could be maintained by adding
a level of trust to peers and cryptographically signing snapshots.

An alternative could be to use a third party service to generate
and sign snapshots. �ese approaches would require additional
infrastructure and are not things we currently support.

3 RELATEDWORK
A more conventional practice on challenged networks is to install an
HTTP cache. E�orts at increasing the e�ciency of caching solutions
have included making multiple caches cooperate [8, 11]. �e C-
LINK system performs cooperative caching by using a coordinating
proxy to store resources using clients’ local storage [10]. If caching
conventions are ignored and stale resources are served, as in [10]
and [5], resource-level HTTP caching remains inadequate as it
assumes that devices on a network are at least partially connected,
even if over a challenged backhaul. By design a cache �rst checks
locally, and in the event of a miss it goes to the network. Since
caching occurs at the network level, there is no way to inform the
user of a miss. If a request misses the cache, the user might like to
know that the request to the origin server will fail or will take more
time than they are willing to wait. Conventional cache models do
not allow this.

Our work is most similar to [5], who implement aggressive HTTP
caching as a Firefox extension. �at project does not coordinate
between machines, preventing users from bene��ing from peer
caches on the network. It is also aimed at accelerating browsing
behavior, e.g. through aggressively prefetching links on a page
from the internet, rather than on distributing content. For these
reasons their system is not well-suited as a platform for OERs.

4 CONCLUSION
Siskin demonstrates that OERs at schools in the developing world
do not require additional hardware or purpose-built devices. Stand-
alone solutions can be replaced or complemented with existing,
ubiquitous infrastructure—the browser—to give disconnected users
access to the more than four billion pages that exist on the web.

REFERENCES
[1] 2017. Critical Links C3. h�p://c3.critical-links.com/. (2017).
[2] 2017. HTTP Archive. h�p://h�parchive.org/. (2017).
[3] 2017. Intel CAP. h�ps://www-ssl.intel.com/content/www/us/en/education/

products/content-access-point.html. (2017).
[4] Fundación Sergio Paiz Andrade. 2016. Evaluation Report: Assessing the

use of technology and Khan Academy to improve educational outcomes in
Sacatepéquez, Guatemala. (2016).

[5] Jay Chen, David Hutchful, William �ies, and Lakshminarayanan Subramanian.
2011. Analyzing and Accelerating Web Access in a School in Peri-urban India.
In WWW ’11. ACM, New York, NY, USA, 443–452.

[6] Stuart Cheshire and Marc Krochmal. 2013. DNS-based service discovery. Technical
Report.

[7] Stuart Cheshire and Marc Krochmal. 2013. Multicast dns. Technical Report.
[8] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000. Summary Cache:

A Scalable Wide-area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8, 3
(June 2000), 281–293.

[9] Nicci C. L. Ga�nowitz. 2016. Digital Library Appropriation in the Context of
SubSaharan Countries: �e Case of eGranary Digital Library Implementation.
In ACM DEV ’16. ACM, New York, NY, USA, Article 29, 4 pages.

[10] Sibren Isaacman and Margaret Martonosi. 2009. �e C-LINK system for collabo-
rative web usage: A real-world deployment in rural Nicaragua. In Workshop on
Networked Systems for Developing Regions.

[11] Radhika Malpani, Jay Lorch, and David Berger. 1995. Making World Wide Web
caching servers cooperate, In Proceedings of the Fourth International World
Wide Web Conference. (December 1995), 107–117.

[12] Alec Wolman, M. Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin, and
Henry M. Levy. 1999. On the Scale and Performance of Cooperative Web Proxy
Caching. In SOSP ’99. ACM, New York, NY, USA, 16–31.

http://c3.critical-links.com/
http://httparchive.org/
https://www-ssl.intel.com/content/www/us/en/education/products/content-access-point.html
https://www-ssl.intel.com/content/www/us/en/education/products/content-access-point.html

	Abstract
	1 Introduction
	2 System Design
	2.1 Snapshotting Content
	2.2 Peer Discovery
	2.3 Content Discovery
	2.4 Security and Privacy

	3 Related Work
	4 Conclusion
	References

